PhD Témy 2024: Odporúčacie a adaptívne webové systémy

Školiteľ: Michal Kompan (UPGM Ústav počítačové grafiky a multimédií )

Odporúčacie systémy sú integrálnou súčasťou prakticky každej modernej webovej aplikácie. Personalizované, resp. adaptívne služby, sa stali štandardom, ktorý je používateľmi aplikácií vyžadovaný skoro vo všetkých doménach (napr. spravodajstvo, četoví agenti, sociálne médiá alebo vyhľadávanie).

Personalizácia má významný vplyv na každodenný život miliónov používateľov naprieč mnohými doménami a aplikáciami. To je zdrojom zásadnej výzvy – návrh metód, ktoré sú nielen presné, ale aj dôveryhodné a spravodlivé. Táto výzva ponúka mnohé výskumné príležitosti vo viacerých smeroch:

  • Nové metódy strojového učenia pre adaptívne a odporúčacie systémy
  • Dôveryhodné metódy odporúčania pre viac-kritériové aplikácie
  • Vysvetľovanie odporúčaní
  • Férovosť a spravodlivosť v odporúčaní
  • Skreslenia v odporúčaní

Jednotlivé smery a výzvy môžu byť adresované vo viacerých doménach ako napríklad vyhľadávanie, elektronický obchod, spravodajstvo, sociálne médiá a iné. 

Súvisiace publikácie:

  • V. Bogina, T. Kuflik, D. Jannach, M. Bielikova, M. Kompan, C. Trattner. Considering temporal aspects in recommender systems: a survey. User Modeling and User-Adapted Interaction, 1-39, 2022. https://doi.org/10.1007/s11257-022-09335-w 
  • I. Srba, R. Moro, M. Tomlein, B. Pecher, J. Simko, E. Stefancova, M. Kompan, A. Hrckova, J. Podrouzek, A. Gavornik, and M. Bielikova. Auditing YouTube’s Recommendation Algorithm for Misinformation Filter Bubbles. ACM Trans. Recomm. Syst. 1, 1, Article 6, March 2023. https://doi.org/10.1145/3568392 

Výskum bude doktorand vykonávať v rámci Kempelenovho inštitútu inteligentných technológií (KInIT, https://kinit.sk) v Bratislave v spolupráci s priemyselnými partnermi alebo výskumníkmi zo svetovo uznávaných výskumných skupín. Predpokladá sa kombinovaná (externá) forma štúdia a pracovný pomer na plný úväzok v KInIT.

Tím školiteľov

Michal Kompan Lead researcher, KInIT Viac info
Close Michal Kompan Lead researcher, KInIT

Michal Kompan is an expert researcher at KInIT. He focuses on recommender systems, machine learning, user modeling, and information retrieval. His research is focused on predictive modeling and customer behavior (e.g., churn prediction, next-item recommendation), as well as content-based adaptive models. Michal serves as a reviewer or/and program committee member at several international conferences, such as RecSys, SIGIR, WWW, ADBIS, Hypertext, UMAP and SMAP.

Peter Brusilovsky Professor, University of Pittsburgh, USA Viac info
Close Peter Brusilovsky Professor, University of Pittsburgh, USA

Peter Brusilovsky is a Professor at the School of Computing and Information, University of Pittsburgh, where he directs the Personalized Adaptive Web Systems (PAWS) lab. His research is focused on user-centered intelligent systems in the areas of adaptive learning, recommender systems, and personalized health. He is a recipient of Alexander von Humboldt Fellowship, NSF CAREER Award, and Fulbright-Nokia Distinguished Chair. Peter served as the Editor-in-Chief of IEEE  Trans. on Learning Technologies, and a program chair for several conferences including RecSys.

Branislav Kveton Principal Scientist, Amazon’s lab, USA Viac info
Close Branislav Kveton Principal Scientist, Amazon’s lab, USA

Branislav Kveton is a Principal Scientist at Amazon’s lab in Berkeley. He proposes, analyzes, and applies algorithms that learn incrementally, run in real time, and converge to near-optimal solutions as they learn. He made several fundamental contributions to the field of multi-armed bandits. His earlier work focused on structured bandit problems with graphs, submodularity, and low-rank matrices, and ranked lists. His recent work focuses on making bandit algorithms practical

Peter Dolog Associate Professor, Aalborg University, Denmark Viac info
Close Peter Dolog Associate Professor, Aalborg University, Denmark

Peter Dolog is an Associate Professor at the Department of Computer Science, Aalborg University, Denmark. His current research interests include machine learning and data mining in the areas of user behavior analysis and prediction, recommender systems, preference learning, and personalization. Peter is a senior member of ACM, served as a senior program commitee member of AI related conferences as well as a general chair of UMAP, HT and Web Engineering conferences.