Multilingual Previously Fact-Checked Claim Retrieval

Fact-checkers are often hampered by the sheer amount of online content that needs to be fact-checked. NLP can help them by retrieving already existing fact-checks relevant to the content being investigated. This paper introduces a new multilingual dataset for previously fact-checked claim retrieval. We collected 28k posts in 27 languages from social media, 206k fact-checks in 39 languages written by professional fact-checkers, as well as 31k connections between these two groups. This is the most extensive and the most linguistically diverse dataset of this kind to date. We evaluated how different unsupervised methods fare on this dataset and its various dimensions. We show that evaluating such a diverse dataset has its complexities and proper care needs to be taken before interpreting the results. We also evaluated a supervised fine-tuning approach, improving upon the unsupervised method significantly.

Cite: Matúš Pikuliak, Ivan Srba, Robert Moro, Timo Hromadka, Timotej Smoleň, Martin Melišek, Ivan Vykopal, Jakub Simko, Juraj Podroužek, and Maria Bielikova. 2023. Multilingual Previously Fact-Checked Claim Retrieval. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 16477–16500, Singapore. Association for Computational Linguistics. DOI: 10.18653/v1/2023.emnlp-main.1027.

Authors

Ivan Srba
Researcher
More
Róbert Móro
Researcher
More
Jakub Šimko
Lead and Researcher
More
Maria Bielikova
Lead and Researcher
More
Matúš Pikuliak
Research Consultant 10/2022-01/2024
More
Juraj Podroužek
Lead and Researcher
More
Martin Melišek
Research Intern 03/2022-05/2024
More
Timotej Smoleň
Research Intern 06/2022-04/2023
More
Timo Hromádka
Research Intern 07/2022-01/2023
More
Ivan Vykopal
PhD Student
More