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Abstract—Over the past years, many representations for time 

series were proposed with the main purpose of dimensionality 

reduction and as a support for various algorithms in the domain 

of time series data processing. However, most of the 

transformation algorithms are not directly applicable on streams 

of data but only on static collections of the data as they are iterative 

in their nature. In this work we propose a symbolic representation 

of time series along with the method for transformation of the data 

into proposed representation. As one of the basic requirements for 

applicable representation is the distance measure which would 

accurately reflect the true shape of the data, we propose a distance 

measure operating on the proposed representation and lower 

bounding the Euclidean distance on the original data. We evaluate 

properties of the proposed representation and the distance 

measure on a number of different datasets. 
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I.  INTRODUCTION  

Many different time series representations were proposed 
over the past years. However, only small portion of them is 
applicable on stream data processing as most of the 
transformation procedures are iterative in their nature or they 
require some sort of statistical information about the whole 
dataset.  

Our primary motivation is to propose a time series 
representation applicable in stream data processing. The prime 
requirement for such a time series representation is incremental 
procedure of the data transformation.  

In our work, we are most interested in symbolic representa-
tions as they enable the application of methods that are not 
defined for real-valued data [1] such as Markov models, suffix 
trees or many algorithms from the domain of text processing. An 
example of such representation is SAX [1] – one of the most 
widely used time series representations. Similarly to the 
majority of other representations however, transformation into 
the SAX representation is iterative and cannot be directly 
applicable to stream data processing as it requires statistical 
information about the whole transformed dataset. Examples of 
other symbolic time series representation can be found in [1, 2, 
3] but they all share the same limitation, stream data cannot be 
directly transformed into these representations. 

The representation we propose is based on the symbolic time 
series representation used in [2] for rule discovery in time series. 
In this work authors use subsequence clustering for construction 
of clusters of similar sequences. They use cluster identifiers as 
symbols for transformation of the time series into sequences of 
symbols. This work influenced many researchers for several 
years, but it has two major limitations: 

• It is iterative due to the K-means algorithm used for 
cluster formation. 

• It has been proved that the transformation process 
produces meaningless clusters that do not reliably reflect 
the data they were formed from [4]. 

In our work, we address both of these limitations. To be able 
to transform the data into the proposed representation 
incrementally, we use an incremental greedy algorithm creating 
new clusters every time new sequence sufficiently distant from 
all other clusters occurs. In previous works multiple authors used 
various techniques to form meaningful subsequence clusters. 
Most of these methods limited the number of sequences used in 
the clustering process by using motifs [5] or perceptually 
important points [6]. We hypothesize, that by changing the 
clustering algorithm and not limiting the number of formed 
clusters, we will form meaningful clusters.    

According to the authors of another study [1] many symbolic 
time series representations were proposed, but the distance 
measures on these representations show little correlation with 
the distance measures on original data. To show our repre-
sentation is not the case, we propose the distance measure SymD 
that returns the minimum distance between time series in the 
representation and we show it lower bounds the Euclidean dis-
tance on the original time series. To evaluate the applicability of 
time series representation we use the tightness of lower bounds 
(TLB) [7] as it is the current consensus in the literature [8].  

The rest of the paper is organized as follows. Section 2 
introduces the symbolic time series representation. Section 3 
defines the distance measure on the proposed representation and 
provides the proof it lower bounds the Euclidean distance on the 
original data. An experimental evaluation of properties of the 
proposed representation and distance measure on the number of 
datasets is presented in section 4. We conclude by summarizing 
obtained results and by hints on future work.  



II. THE SYMBOLIC REPRESENTATION 

As a base for our time series representation we use an 
assumption presented in [9]. The authors state that frequent 
patterns extracted from time series data are more stable than the 
time series itself. We use this assumption to form the main idea 
of our representation as to represent time series data as a 
sequence of reoccurring patterns. We search for reoccurring 
similar subsequences in the course of the whole data stream by 
clustering subsequences. We transform them into sequences of 
symbols where every cluster identifier is transformed into a 
symbol similarly to the representation proposed in [2]. For the 
purpose of our work, we will refer the proposed representation 
as to Incremental Subsequence Clustering (ISC).  

The transformation of stream data to the ISC representation 
can be divided into three steps: 

1. Split incoming data into overlapping subsequences 
using running window. 

2. Cluster subsequences by their similarity. 

3. Use cluster identifiers as symbols, subsequences are 
transformed to. 

The main difference of the proposed ISC representation to 
the representation Das et al. used [2] is the clustering algorithm 
we use for symbol formation. They used K-means, which is 
iterative in its nature and requires the number of formed clusters 
to be specified in advance. We use incremental greedy algorithm 
not limiting the number of cluster but limiting the maximal 
distance of instances in the cluster. The algorithm assigns 
subsequence into the cluster if its distance from the cluster centre 
is smaller than the predefined threshold. The algorithm forms 
new cluster with the subsequence in its centre if no cluster with 
the distance to the processed subsequence lower than the 
maximal distance exists. The proposed representation forms a 
dictionary of symbols (clusters) which grows with the amount 
of the data processed. We adopt the already mentioned 
assumption about frequent pattern stability presented by [9] and 
we assume the speed of growth of the dictionary of symbols will 
decrease with the amount of data processed. The experiments 
supporting this claim are presented in section 4.    

The dictionary of symbols represent the main difference 
between the proposed ISC representation and SAX. The 
symbols formed by SAX represent equiprobable intervals of 
PAA coefficients [7] which in turn are results of an aggregate 
function (mean) performed on a sliding window of a time series. 
In the case of our representation, individual symbols represent 
repeating shapes and the alphabet of symbols represent a 
dictionary of all shapes occurring in the course of the time series. 

The transformation uses three parameters: symbol length 
(size of the running window), step between two consecutive 
windows (typically equal to a fraction of symbol length), 
maximal distance of cluster centre and a subsequence in the 
cluster. Every symbol in the dictionary of symbols is represented 
by z-normalized subsequence forming the centre of the cluster 
and the cluster identifier. The transformed time series is formed 
by a sequence of triples: cluster identifier, mean and standard 
deviation of the original subsequence. Using these attributes we 
are able to approximately reconstruct the original time series. 

III. LOWER BOUNDING SIMILARITY MEASURE 

Having defined the symbolic time series representation, we 
now define the similarity measure on the transformed data and 
we prove it lower bounds the Euclidean distance on the original 
data. As the distance measure for the ISC representation we 
adapt the representation introduced in [1] where the authors 
proposed an adaptation of Euclidean distance called MINDIST. 
MINDIST uses table of distances between individual symbols in 
the SAX representation of the data to calculate the overall 
distance. In this representation, the distance table depends solely 
on the number of symbols used in the transformation process. 
As the ISC representation does not use stable alphabet of 
symbols and the distance between symbols depends on the shape 
of the data they are formed from, we have to calculate the 
distance table from the symbol alphabet. We define the symbolic 
distance measure (SymD) as an adaptation of MINDIST distance 
measure that returns the minimum distance between time series 
in the ICS representation.  

The proposed distance measure builds on the most common 
time series distance measure - Euclidean distance. Eq. (1) shows 
the formula for Euclidean distance of two time series, Q and C 
of the length n. 

 ����, �� = 	
∑ �� − ������  (1) 

We show the lower bounding property of SymD by 
introducing an auxiliary distance measure as transition from 
Euclidean distance to the presented SymD distance measure. 
Among these distance measures we demonstrate the lower 
bounding property and transitively we extend the proof to the 
proposed SymD distance measure on the ISC representation (Eq. 
(2)). The auxiliary distance measure we introduce (for the 
explanation sake named OverED) is described in the following 
paragraphs. 

 �������, ��� ≤ �������� , �̿� ≤ ����, �� (2) 

In Eq. (2), Q and C refers to two compared time series in 

their raw representation. �" and �  refer to time series split into 

overlapping subsequences of length w and shift s. �# and �� refers 
to time series in ISC representation. 

The distance measure OverED refers to the adapted 
Euclidean distance, where we split the time series into 
overlapping subsequences of equal length w and shift s between 
two consecutive subsequences. The distance between two 
subsequences is calculated using Euclidean distance. 

An illustration of time series transformed to overlapping 
subsequences is presented on Fig. 1. 

 

Fig. 1. Example of sequence split into overlapping subsequences 



Fig. 1 shows a sequence of values in a time series 
abcdefghijklmno where every symbol refers to a different 
value. OverED operates on the time series split into overlapping 
subsequences of length w and shift s. We choose in our example 
w=5 and s=2 and we split the sequence. 

As we can see from the example, some values are represented 
repeatedly in the transformed data (eg. c, d, e ...) and some are 
represented only once or with different frequencies (eg. a, b, n 
and o). The contribution of the time series value to the 
overlapping representation depends on its position in the 
processed time series. None of these values however is repeated 

more than $%&'times. We define the OverED as sum of squared 

distances between subsequences (similarly to Euclidean 
distance) divided by the maximal number of occurrences of 
individual values in the transformed representation. Eq. (3) 

shows the definition of OverED where �("  and �(" are i-th 

subsequences of time series � and � , n is the total length of time 
series, w is the subsequence length, s is the shift between two 

subsequences and $)−%
& ' is the total number of symbols in the 

transformed representation.  

 �������� , �̿� = *∑ +,��"-,� -�.$/012 '-34 $12 '  (3) 

An alternative notation for the OverED distance measure is 
based on the number of occurrences of individual time series 
values in the overlapping representation. To measure the 
contribution of individual values to the resulting representation, 
we can split the time series into three parts:  

• Start - with increasing contribution of values to the 
overlapping representation. 

• Centre - with constant contribution of different values to 
the representation. 

• End - with decreasing contribution of different values. 

The distance measure on such representation have to adjust 
to the variable contribution of values to the representation. We 
can define the contribution of for each part of the time series to 
the distance measure separately: 

 �56�5�� , �̿� = ∑ ∑ (��789:� − �789:���;<=�7,>:7�:���9��$12 '��  (4) 

 �)?�� , �̿� = ∑ ∑ (���:789 − ��:789��;<=�7,>:7�:���9��$12 '��  (5) 

 ��)5���� , �̿� = $>7 ' ∑ �� − ����:>:��>8�  (6) 

In Eq. (4), Eq. (5) and Eq. (6), �( and �( to i-th values of time 

series Q and C. Since every �( and �( from Q and C respectively 

is not repeated in the representation more than $%&' times, we can 

divide the sum of distances of three parts of the time series by $%&' and the resulting distance will be never greater than ED(Q,C) 

thus it satisfies the lower bounding property. 

�������� , �̿� = *@ABCA�D ,E̿�8	EF�ACF�D ,E̿�8+�G�D ,E̿�
$12 ' ≤ ����, �� (7) 

The last step of the proof is to show that clustering of similar 
subsequences using Euclidean distance into clusters, defined by 
its centre and maximal distance of the subsequence from the 
centre, lower bounds the OverED distance measure. The sole 
difference between SymD and OverED is, that the SymD does 
not compute the distance using the raw time series 
subsequences, but rather centres of cluster every subsequence is 
attached to. To calculate the distance of time series in ISC 
representation, we have to substitute the distance of overlapping 
subsequences by the distance of clusters centres. However, the 
substitution by these clusters introduces some error as they are 
only approximate representation of the original overlapping 
subsequence. To use the cluster centres instead of the original 
subsequences we have to define the relation of Euclidean 
distance of the individual subsequences and the Euclidean 

distance of cluster centres. For the purpose of this proof 6H and I	Jrefer to the cluster centres time series a and b respectively are 
associated with. The cluster diameter or maximal distance 
between cluster centre and time series associated to this cluster 
is denoted r. We start the proof using the equality of Euclidean 
distance of cluster centres to itself in Eq. (8). 

 ���6H, IK� = ���6H, IK� (8) 

Using triangular inequality (Eq. (9)) of ED twice on the right 
side of Eq. (8), we obtain Eq. (10) 

 ���6, I� ≤ ���6, �� + ����, I� (9) 

 ���6H, IK� ≤ ���6, 6H� + ���6, I� + ���I, IK� (10) 

As ���6, 6H� ≤ � and ���I, IK� ≤ � we can transform the 
Eq. (10) to: 

 ���6H, IK� − 2� ≤ ���6, I� (11) 

The geometrical illustration of this proof is on Fig. 2. 

By applying the Eq. (11) on OverED distance measure from 
Eq. (3), we show that: 

 *∑ ����N(,�̂(�2$)−%& '
(=1 $%&' − 2� $)−%

& ' ≤ *∑ ���Q (,R(̿�2$)−%& '
(=1 $%&'  (12) 

 

Fig. 2. Geometrical illustration of the relation between distance and 

distance of cluster centres. 



And thus: 

�������, ��� = *∑ +,�QN-,R-̂�.$/012 '-34 $12 ' − 2� $�:>7 ' ≤ �������� , �̿� (13) 

where n is the total number of values in the time series, �N( 
and �̂( refers to i-th symbol time series �N  and �N in ISC 

representation, r is the radius of the clusters forming the 
symbols, w is the length of the symbol and s is the shift between 
two symbols. Using the Eq. (13), we prove SymD lower bounds 
OverED and thus we complete the proof of Eq. (2). We show 
that the proposed distance measure SymD operating on time 
series transformed into ISC representation lower bounds the 
Euclidean distance on raw form of the time series. 

IV. EVALUATION 

To evaluate properties of the proposed representation we 
performed a series of experiments on the UCR datasets [10]. We 
focused on the evaluation of tightness of lower bound as one of 
the most widely used metrics for evaluation of time series 
representations [8]. The second metric we chose for evaluation 
of proposed representation is the size of symbol dictionary 
formed during the transformation as it determines the memory 
requirements of the representation and its applicability in stream 
data processing.  

Since the transformation into the ISC representation requires 
three parameters to be set, in the following figures we provide 
several examples of relationship between these attributes, 
tightness of lower bound and symbol alphabet size. Fig. 3, Fig. 
4 and Fig. 5 display the data obtained by processing the Symbols 
dataset from the UCR [10] repository. Similar results were 
obtained for other datasets from the repository, but they are 
omitted due the limited length of this paper. 

 

Fig. 3 shows the relationship between the amount of data 
processed and the size of the symbol alphabet. The figure 
displays the evolution of alphabet size with increasing portion of 
the dataset processed and for different settings of the limit 
distance used in cluster formation. We can see that the speed of 
formation of new symbols decreases with the amount of 

processed data in accordance with our assumption about stability 
of frequent patterns introduced in the section 2. The differences 
in the course of alphabet size for distinct limit distance settings 
indicate the increasing number of clusters formed when size of 
the cluster is small. 

The relation between the size of alphabet formed after 
transformation of the whole dataset and the size of cluster 
created during the transformation is displayed on Fig. 4. One can 
see that the relation is not linear, but with the increasing size of 
the clusters the number of symbols decreases slower.  

 

  With the increasing size of the clusters, more similar 
subsequences are grouped to the same cluster centre. This should 
result in decreased accuracy of reconstruction of the represen-
tation to the original time series data. The accuracy of recon-
struction is reflected in the tightness of lower bound metric as it 
indicates the ratio between the similarity of two transformed 
time series calculated using the SymD distance measure and the 
distance calculated using Euclidean distance on the original time 
series. The relation between tightness of lower bound and cluster 
size is presented on Fig. 5. 

 

To evaluate the tightness of lower bound we performed an 
experiment where we took a sample of 200 time series from the 
Symbols dataset and we calculated the average tightness of 

 
Fig. 3. The relationship between alphabet size and number of data 

processed with different settings of maximal distances of subsequence to 

the centre of associated cluster. Data for UCR [10] dataset Symbols. 

 

Fig. 4. Relationship between the final alphabet and size of created clusters. 

Data for UCR [10] dataset Symbols. 

 
Fig. 5. The relationship between the tightness of lower bound and size of 

created clusters. Data for UCR [10] datasets Symbols. 



lower bound for every pair of these time series. We performed 
the experiment for different sizes of formed clusters. The results 
are presented in Fig. 5. The relationship between the tightness of 
lower bound and cluster size is almost linear with small 
variability caused by the size of the used sample. These results 
indicate there is a tradeoff between the size of the created symbol 
alphabet and the tightness of lower bound obtained by the ISC 
representation and associated SymD distance measure. When 
one will choose the settings for the transformation he/she have 
to decide on the basis of the application at hand. 

The relation between the tightness of lower bound and limit 
distance used in cluster formation for other datasets from the 
UCR repository [10] is displayed on Fig. 6. The graph shows the 
TLB increases with the decreasing size of the clusters for every 
used dataset. The value of the maximal obtained tightness for the 
used settings, however, is variable between datasets. For some 
datasets the limit distance have to be smaller to obtain the same 
TLB. This is caused by the shape of the time series in the dataset. 

To compare the proposed representation to other time series 
representations such as SAX, PAA or DFT, we can use the 
results presented in [8]. This comparison however, provides only 
limited informative value as these representations use different 
parameters and majority of them is iterative in their nature in 
contrast to the proposed representation. The authors evaluated 
various time series representations with different transformation 
settings on EEG dataset from the UCR repository [10]. The 
obtained tightness of lower bound varied from 0.258 to 0.782. 
The results for ISC representation in combination with SymD 
distance measure varied from 0.268 to 0.601 with different 
settings of the transformation. The proposed representation thus 
obtained comparable results with possible improvements if 
smaller limit distance was used in the transformation process. 

To evaluate the clustering meaningfulness we had to adapt 
the formula used in [4]. The clustering meaningfulness is a 
measure defined on two distinct datasets as a fraction of mean 

minimal cluster distances within dataset over mean minimal 
clusters distances between datasets [4]: 

 ��6)()STUV)�&&�WX, YN� = %(5ℎ()_&�5_W#_?(&56)��I�5%��)_&�5_W#_6)?_Y#_?(&56)�� (14) 

The original definition of %(5ℎ()_&�5_W�_?(&56)�� 
presented in [4] calculates the mean minimal distance of cluster 
centres formed by multiple runs of K-means algorithm on the 
dataset. Since our clustering algorithm does not use random 
initialization, the minimal distance of clusters formed by 
multiple executions of the algorithm would be zero. We simplify 
the meaningfulness formula to be equal to the mean minimal 
distance between sets. 

To evaluate the meaningfulness of subsequence clusters 
formed during the transformation of time series into the ISC 
representation we performed an experiment on several datasets 
from UCR repository [10]. We clustered pairs of datasets and 
compared mean distance of formed clusters for different settings 
of cluster formation. We used whole time series to form the 
clusters and fractions of the time series as symbols in the ISC 
representation. As the lengths of the formed symbols we used 
1/2, 1/4 and 1/8 of the sequence length. As for other 
transformation settings, the step between symbols was set for 
one half of the symbol size (not in the case of whole clustering, 
where the step was not used) and limit distance between cluster 
centre and associated subsequences was set to 0.2. The results 
are presented on Fig. 7 where values of mean minimal distance 
between two datasets for whole sequence clustering and 
different lengths of subsequence clustered are showed. One can 
see the mean distance decreases when the size of the symbol is 
decreasing for every examined combination of datasets. The 
change in distance approximately follows the size of the time 
series fraction used as symbol. This is caused by the space of 
similar sequences filling up when the length of clustered 
subsequences is decreasing and when the radius of clusters is 
fixed. This results in more formed clusters, closer together. 

 

Fig. 6. Tightness of lower bound for different datasets from the UCR repository [10] and different sizes of formed clusters 



When we shrink the size of symbols even more, the normalized 
symbols are reduced into a small alphabet of basic shapes as seen 
on Fig. 8. The decrease in mean minimal cluster centre distance 
is not caused by the randomness of formed cluster but by the 
shrinking subsequence space as the centres are formed from the 
original time series shapes. 

 

 

V. CONCLUSIONS 

We proposed a symbolic representation of time series (ISC) 
using clusters of similar subsequences as symbols. The clusters 
are formed using incremental, greedy algorithm which differs 
the representation from the representation used in [2] and makes 
it applicable on stream data processing. As we showed, the 
subsequence clustering decreases the mean minimal cluster 
centre distance but it is caused by the shrinking space and not 
the randomness of formed sequences as they are formed from 
the basic shapes of the original time series.  The major difference 
of the proposed representation to the SAX representation is the 
meaning of individual symbols as they represent repeating 
shapes in the course of the time series.  

The similarity metric on the proposed representation (SymD) 
is introduced along with the proof that it lower bounds the 
Euclidean distance. We performed several experiments on UCR 
collection of datasets [10] to show the properties of the 
representation.  

As the tightness of lower bound of the representation 
depends on the settings of the cluster formation process, the 
potential user of the representation has to make a trade-off 
between the accuracy of the representation and the size of the 
alphabet of symbols created during the transformation. One of 
the limitations of the proposed representation are three parame-
ters of the transformation (symbol length, between symbol step 
and cluster radius). The representation is applicable in domains 
where symbols of stable length are repeating over time and 
where we process large amounts of data continuously. We use 
the representation for example for short term prediction of 
electricity consumption or anomaly detection and application 
monitoring. The other direction of our future work is in the 
management of the ever growing alphabet of symbols during 
data stream processing. 
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Fig. 7. The meaningfulness evaluation for multiple dataset combinations 

and different settings of symbol lengths used for the transformation. 

Diagrams show mean shortest distance between clusters of two datasets 

when whole sequences were clustered and when ISC transformation was 

used with symbol sizes of 1/2, 1/4 and 1/8 of time series length. 

 
Fig. 8. The alphabet size when different symbol length are used. 

Logarithmic scale used on both axes. 


